Set-theoretic generators of rational space curves
نویسندگان
چکیده
We show how to calculate three low degree set-theoretic generators (i.e., algebraic surfaces) for all rational space curves of low degree (degree ≤ 6) as well as for all higher degree rational space curveswhere at least one element of theirμ-basis has degree 1 from a μ-basis of the parametrization. In addition to having low degree, at least two of these surface generators are always ruled surfaces. Whenever possible we also show how to compute two set-theoretic complete intersection generators for these rational space curves from a μ-basis of their parametrization. © 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Bases and Ideal Generators for Projective Monomial Curves
In this article we study bases for projective monomial curves and the relationship between the basis and the set of generators for the defining ideal of the curve. We understand this relationship best for curves in P and for curves defined by an arithmetic progression. We are able to prove that the latter are set theoretic complete intersections.
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملProducing Complete Intersection Monomial Curves in N -space
In this paper, we study the problem of determining set-theoretic and ideal-theoretic complete intersection monomial curves in affine and projective n-space. Starting with a monomial curve which is a set-theoretic (resp. ideal-theoretic) complete intersection in (n − 1)-space we produce infinitely many new examples of monomial curves that are set-theoretic (resp. idealtheoretic) complete interse...
متن کاملTautological Relations on the Stable Map Spaces
The cohomology of the spaces of rational stable maps to flag varieties is generated by tautological classes. We study relations between the tautological generators. We conjecture that all relations between these generators are tautological, i.e. they are essentially obtained from Keel’s relations onM0,n with the aid of the pushforwards by the natural morphisms. We check this claim on the open p...
متن کاملSpace Curves as Complete Intersections
This is an expository account based mainly on an article by Jack Ohm titled “Space curves as ideal-theoretic intersections”. It also gives a proof of the fact that smooth space curves can be realized as set-theoretic complete intersections. The penultimate section proves the theorem of Cowsik and Nori : Curves in affine n-space of characteristic p are set-theoretic complete intersection.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 45 شماره
صفحات -
تاریخ انتشار 2010